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Universal decay of vortex density
in two dimensions

-Greg Huber

Center for Polymer Studies, B‘ostonv University, Boston, Massachusetts 02215 USA, and
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 USA *

Preben Alstrgm

- Physics Laboratory, H. C. Qrsted Institute, DK-2100 Copenhagen @, Denmark

Recent numerical and experimental results for freely-decaying two-dimensional turbulence

point to a universal decay in vortex density, p ~ t"-f‘ (¢ ~ 0.73), from highly turbu-

lent to laminar, vortex-free flows. This vortex decay has been successfully described in

terms of a point-vortex dynamics,”in close resemblance to the vortex dynamics for the

two-dimensional Ginzburg-Landau equation. Here, we add numerical evidence and give
theoretical arguments that the vortex density at late times follows the conjectured power

law with ¢ = 3/4.

1. Introduction
Vortices are an essential part of turbulence. An understanding of their dynamics and
' , ) : .
interactions is likewise crucial to the description of superconductors and superfluids. Re-

cently, the role of vortices in the free decay of two-dimensional turbulence has come under -

close scrutiny [1-4]. The evolution of vorticity is given by the fluid-dynamical equation

B+ J($,w) = vV, w=Vi, (1a, b)

* Present address.



where w is the scalar vorticity, ¥ the stream function, v the kinematic viscosity, and
J(¢,w) = 8;1Fyw — 8,wdy the Jacobian. Through numerical integrations of this system,

McWilliaxﬂs [1] found that the vortex density p decays in time according to a power Iaw,
p~tTh | ' (2)

with a non-integral exponent £ ~ 0.71. In later works [2,3] the value is variously reported
as { =~ 0.72 — 0.75. Furthermore, a recent turbulence experiment by Tabeling et al. [4]
yielded € = 0.7 £ 0.1, in support of universality. |

| P‘reliminary results have pointed to a universal £ value for a whole hierarchy of freely-
decaying turbulence models [2]. These models are based on a Ha.milton_ié.n point-vortex

dynamics, which has been shown to be an excellent approximation [5]. In these models,

the vortices are replaced by a particle placed at the vortex center. Each particle has a -

‘charge’ equal to the total integrated vorticity § wdx of the spread vortex, and moves in

a logarithmic potential defined by the harmonic stream function. Moreover, two particles
with ‘charges’ of equal sign merge when they get closer than a given distance. Based on

the above ‘vortex census’ [1], we add here numerical evidence and give general arguments

to show that the vortex density p(t) (at late times) decays according to a power law with

a universal exponent § = 3/4.

2. Vortices in the Ginzburg-Lahdau .equation

The point-vortex picture for two-dimensional turbulent flows has'a strong resemblance
to the Coulomb gas (where charges of opposite sign merge). We have, therefore, undertaken
a large-écale‘numerical study of the vortex decay in the two-dimensional Ginzburg-Landau
equation, 1which‘ is the prototypical equation relevant to the description of vortices in
Coulomb-gas systems like the XY model and thin superconducting films (6). The noiseless

(zero-temperature), time-dependent Ginzburg-Landau equation takes the form

A(x,8) = pA(x,£) — |A(x, D2 A(x, £) + V2 A(x, 1), (3)
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where A(x,t) is a complex order parameter at point x and time ¢. In the context of :
fluid dynamics, the Ginzburg-Landau equation is also refered to as the Stewartson-Stuart
equation [7,8. For u <0, A(x,t) = 0; for u > 0, A = /i is a homogeneous, stable solution.
However, the decay towards the homoéeneous state from an initial rahdom (high-T') state
with many vortices. is far from trivial. As we shall see, our numerical results give further
support for universality.

A point-vortex picture appiies also to the Ginzburg-Landau system. In comparison
with the point-vortex picture for turbulence, ‘we write A = exp(y + 1¢), where ¢ corre-
sponds to the stream function and the phase ¢ is the dual potential. Moreover, the ‘charges’
have integral values, which quickly reduce to +1 (vortex) or —1 (antivortex). Thus, merg—
ing here means annihilation. By definition, the circulation of the grédient of the phése over
a closed loop containihg n4 vortices and n_. a_ntivértices is Ap = §d¢ = 2n(ny — n-).
The phase ¢(x,t) at a vortex center is undefined, but |A| = exp(¢)) — 0, so A remains
well-defined. | |

3. Simulations
The numerical simulation of the Ginzburg-Landau equation is sped up substantially by
separafing the local Stuart-Landau part (the first two terms) from the non-local diffusive

term [9,10]. The iterative coupled-map system thus obtained is
A(x,t+27) = Fle™ A(x, 1), @

where

F(z)= 2/ /3T (L= NP p, A =e~2, (5a,0)
is the solution to the Stuart-Landau equation. Moreover, we use a square lattice, invoking

the approximations

eV (14 7V /m)™ | (6a)

A

V2 A(x,) = 2 TIAR, 6 - Ak, 0, ()
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where m = 5, and the sum is over the four nearest neighbors x’. Larger values of m had
no appreciable eﬁ'ect on the observed dynamics. Thebalgon'thm takes advahtage of the
_parallel architecture of the Coonection Machine 2.

' Flg 1 shows the evolution of the vortex density p for p =1 and_ 7 = 0.2. The system
is initialized in a ré.ndorn state on a lattice of size 512 x 512, with periodic boundary
cond1t1ons Initially, a state with many moving vortlces and antivortices is formed (fig 2a),
but in time, the vortlces and antivortices meet and annihilate; ny = n_ for the system as
a Whole (conservation of vorticity). At early times, the rate of annihilation is proportional
to the density squared, giving thé value [11,12] £ = 1, but at later times the vortices are
more sparsely distributed (fig. 2b) making the anmhxla.tlon rate non-trivial. Here we find
numerically that the vortex decay follows a power law, thh £ =0.74 £ 0.02 (fig. 1). This
result agrees with simulations for the sca.t_tenng function by Mondello and Goldenfeld [13]
('who however speculate that £ = 1 at very iate stages). There is thus strorig evidence for

a universal vortex-decay law. We now present a..theory for this exponent.

4. Dynamical length scale
A length scale R, characteristic of time t, can be extracted by considering the average

initial separation between two vortices that merge (annihilate) at time ¢. At late times (low

density), the vortices interact via a logarithmic pair potential ¥(x;,x;) = —klog(r), where
r = |x; — xj|. The dissipative equation of motion, 7 = ——— = (or in the hydrodynamical
case, 1 = —g—f, where & is the phase field dual to ¥), relates the initial separation R

between two merging vortices to their merging (annihilation) time ¢,
R~WVt. - (7

Computations of the annihilation times for our Ginzburg-Landau system of many vortices
on a 128 x 128 lattice are in agreement with this square-root law (fig. 3).
The theory of continuous ordering [14] provides another reason to expect a dynamical

length scale R(t) that scales like v/#. The vortex dynamics can be viewed as the non-
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equilibrium phase ordering arising from an instantaneous quench.frém a high-temperature
to a zero-temperature configuration. One could arbitrarily divide the phas'e #(x,t) of A
into two states by assigning +1 to sites with Im(A) > 0, and —1 to sites with Im(A) < 0
_(in the hydrodynamical case, ¢ is the potential dual to the stream functionvz/)). In this
way, the complex order parameter is transformed to an up-down spin. In figs. 4a—1f we
show this two-state phase at six different times, each frame a faocton. of four later in time
than the previous frame. State +1 appears as yellow, state —1 as blue. The vortices and

antivortices lie on the +1/—1 interface. With no locally-conserved order parameter, the

square-root law is predicted by the Lifshitz-Allen-Cahn theory [14,15].

5. Perimeter law

The decay can be understood in térms of the dynamical length R(t), which we associate
with an interaction volume [16,17]: After a time ¢, all vortex-éntivortex pairs within an
area A ~ R%(t) have had a chance to annihilate. The number of réma.ining vortices p(t)A
equals §(Ad4)/27, where §(Ad4) is the standard deviation of the circulé,tion A¢ over a
perimeter enclosing the area A. One might reason [18] that because of the presence of
free vortices in the initial high—temperature regime, the variance of A¢ 4 should scale like
the area of A. Though intuitively plaus1ble this ‘area law is'incorrect. Based on a (high- -
temperature) uniform distribution of mutually-independent phase differences (mod 27)
between ne1ghbor1ng sites, Dhar [19] showed that, for large areas (late times), the variance.
of A¢. at all temperatures is proportional to the perimeter of A, i.e. 82(A¢a) ~ R. (In

fact, this result is a consequence of Stokes’ law [13].) Thus,
PR ~§(Ag.4) ~ VR. - 8)

In other words, p ~ R_3/2, implying the exponent £ = 3/4.
- We point out that the initial separation R ~ p~2/3 between vortices that later merge
(annihilate) differs from the average distance ! ~ p~1/2 between vortices (of both signs).

It is a consequence of this, and not of anomalous diffusion, that close encounters between

5



vortex pairs occur less freq;uently than expected from the random motion of (sign-less)
-vortices [1]. | | |

In conclusion, we have pfesented numerical evidence and general arguments to show
that; the freely-decaying vortex densitsf in two-dimensional Coulomb-gas systems, includ-
ing freely-decaying twb—dimensional turbulence, follows a bower law at late times with a

universal exponent £ = 3/4.
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FIGURE CAPTIONS.

Figure 1: Log-log plot of vortex density p(t) obtained from the Ginzburg-Landau equation-
(3) with u = 0.2 and 7 = 0.2, étarting from a random initial configuration. Initial slope 1s

compared with a s:lope' of —1. The asymptotic slope is found to be { = 0.74 & 0.02.

. Figure 2: Phase ¢(x,t) of the order pérémeter A for the Ginzburg-Landau equation with

p=02and 7 = 02. (a)t = 64. (b) t = 4096. The color change from blue to red

‘corresponds to a change in phase from —7 to 7 (lattice size 512 x 512).

 Figure 3: Log-log plot of vortex-antivortex separation R (at _time t = 30) versus annihi-

lation time ¢t. The solid line has slope 1/2.

Figure 4: Phase coarsening,. The phase ¢(x,t)_ (as in fig. 2) is divided into two states by |

as.signing +1 (yellow) to sites with Im(A) > 0, and —1 (blue) to sites with Im(A) <0.
_ The vortices and antivortices must lie on the +1/-1 interface. (a) t = 4. (b) t = 16. (c)
t=64.(d) t = 256. (e) ¢ = 1024. (f) t'= 4096. | |
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Figure 2 (a)
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